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PREFACE 

The series of manuals on techniques describes procedures for planning and 
executing specialized work in water-resources investigations. The material is 
grouped under major subject headings called books and further subdivided into 
sections and chapters; section B of book 3 is on ground-water techniques. 

The unit of publication, the chapter, is limited to a narrow field of subject 
matter. This format permits flexibility in revision and publication as the need 
arises. Chapter 3B7 deals with analytical solutions to the solute-transport 
equation for a variety of boundary condition types and solute-source configura- 
tions in one-, two-, and three-dimensional systems with uniform ground-water 
flow. 

Provisional drafts of chapters are distributed to field offices of the U.S. 
Geological Survey for their use. These drafts are subject to revision because of 
experience in use or because of advancement of knowledge, techniques, or 
equipment. After the technique described in a chapter is sufficiently developed, 
the chapter is published and is for sale from the U.S. Geological Survey, Book and 
Open-File Report Sales, Federal Center, Box 25425, Denver, CO 80225. 

Copies of the computer codes and sample data sets described in this report are 
available on diskette from Book and Open-File Report Sales as USGS Open File 
Report 92-78. They are on a 5.25” (360K) double-density diskette formatted for 
the IBM PC. The computer programs were originally written for a Prime 
minicomputer but all programs should run using IBM-PC Fortrans with minor 
modifications as described in the report. The plot routines were written with 
DISSPLA software calls and can be used on the PC only with the PC version of 
the DISSPLA library. Alternatively, data can be easily extracted from the 
program output and plotted using PC graphics presentation programs. 

Reference to trade names, commercial products, manufacturers, or distribu- 
tors in this manual constitutes neither endorsement by the U.S. Geological 
Survey nor recommendation for use. 
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25.4 
0.3048 
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ANALYTICAL SOLUTIONS FOR ONE-, TWO-, AND 
THREE-DIMENSIONAL SOLUTE TRANSPORT IN GROUND-WATER 

SYSTEMS WITH UNIFORM FLOW 

By Eliezer J. Wexler 

Introduction 

Contamination of ground water by inorganic and 
organic chemicals has become an increasing concern in 
recent years. These chemicals enter the ground-water 
system by a wide variety of mechanisms, including 
accidental spills, land disposal of domestic and indus- 
trial waste, and application of agricultural fertilizers 
and pesticides. Once introduced into an aquifer, these 
solutes will be transported by flowing ground water 
and may degrade water quality at nearby wells and 
streams. 

Abstract 

Analytical solutions to the advective-dispersive solute-transport 
equation are useful in predicting the fate of solutes in ground water. 
Analytical solutions compiled from available literature or derived by 
the author are presented for a variety of boundary condition types 
and solute-source configurations in one-, two-, and three- 
dimensional systems having uniform ground-water flow. A set of 
user-oriented computer programs was created to evaluate these 
solutions and to display the results in tabular and computer- 
graphics format. These programs incorporate many features that 
enhance their accuracy, ease of use, and versatility. Documentation 
for the programs describes their operation and required input data, 
and presents the results of sample problems. Derivations of selected 
solutions, source codes for the computer programs, and samples of 
program input and output also are included. 

To improve management and protection of ground- 
water resources, it is important to first understand 
the physical, chemical, and biological processes that 
control the transport of solutes in ground water. 
Predictions of the fate of ground-water contaminants 
can then be made to assess the effect of these chemi- 
cals on local water resources and to evaluate the 
effectiveness of remedial actions. 

Two physical processes that govern the movement 
of ground-water solutes are (1) advection, which 
describes the transport of solutes by the bulk motion 

of flowing ground water (Freeze and Cherry, 1979), 
and (2) hydrodynamic dispersion, which describes the 
spread of solutes along and transverse to the direction 
of flow resulting from both mechanical mixing and 
molecular diffusion (Bear, 1979, p. 230). Chemical 
reactions, including those mediated by microorgan- 
isms or caused by interaction with aquifer material or 
other solutes, may also affect the concentration of the 
solute. 

These prqcesses have been described quantitatively 
by a partial differential equation referred to as the 
“advective-dispersive solute-transport equation.” 
Solution of the equation yields the solute concentra- 
tion as a function of time and distance from the 
contaminant source. To apply the equation to a par- 
ticular ground-water contamination problem, data 
must be provided on the ground-water velocity, coef- 
ficients of hydrodynamic dispersion, rates of chemical 
reactions, initial concentrations of solutes in the aqui- 
fer, configuration of the solute source, and boundary 
conditions along the physical boundaries of the 
ground-water flow system. 

In ground-water systems having irregular geome- 
try and nonuniform aquifer properties, numerical 
techniques are used to determine approximate solu- 
tions to the solute-transport equation. In aquifers 
having simple flow systems and relatively uniform 
hydrologic properties, analytical solutions, which rep- 
resent exact mathematical solutions to the solute- 
transport equation, have been used to predict contam- 
inant migration. These solutions are also used 
extensively in analysis of data from soil-column exper- 
iments and field tracer tests to determine aquifer 
properties, and have been used to verify the sound- 
ness of numerical models. In complex hydrogeologic 
systems, analytical solutions can still be useful to the 
hydrologist because they can provide estimates of 

1 
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rates of solute spread and, thus, guide data collection 
and water-quality-monitoring efforts. 

Although deriving an analytical solution for the 
solute-transport equation requires knowledge of 
higher mathematics, analytical solutions have already 
been derived and published for many combinations of 
solute-source configurations and boundary-condition 
types. After the solutions have been derived, they can 
be evaluated easily using electronic calculators or 
digital computers. 

Purpose and scope 
This report briefly describes the theoretical back- 

ground of solute transport in a porous medium and 
then presents analytical solutions to the advective- 
dispersive solute-transport equation for a variety of 
aquifer and solute-source configurations and boundary 
conditions in systems having uniform (unidirectional) 
ground-water flow. Solutions for one-dimensional sol- 
ute transport were compiled from various journals and 
reports, many of which are not readily available. 
Many of the solutions for two- and three-dimensional 
solute transport were modified from those presented 
in a report by Cleary and Ungs (19’78), whereas others 
were derived by the author using integral transform 
techniques. (Detailed derivations of these solutions 
are provided in attachment 1.) All solutions are given 
in a simplified format, together with information on 
important assumptions in their derivation and limita- 
tions to their use. 

Simple computer programs, written in FORTRAN- 
77, have been provided for evaluation of the analytical 
solutions presented. The programs were designed for 
ease of use and for enhanced accuracy. Documentation 
for these programs includes descriptions of program 
operation and the input data required. Source codes 
and samples of program output are provided at the 
end of the report. Subroutines that allow for graphical 
display of the program output, created using DISS- 
PLA software, are also described. Computer- 
generated plots are presented within the report. 

Previous studies 
Analytical solutions for the one-dimensional form of 

the solute-transport equation have appeared in 
reports and journals concerning physical chemistry, 
soil science, and water resources. These solutions, 
generally determined through Laplace transform 
techniques, have been applied to studies of solute 
movement in laboratory columns, unsaturated soils, 
and natural-gradient tracer tests. Solutions to the 
one-dimensional solute-transport equation for most 

combinations of boundary and initial conditions are 
given in van Genuchten and Alves (1982); some of the 
more useful solutions appear in this report. Other 
sources that list several analytical solutions include 
Gershon and Nir (1969), Bear (19’72), and Bear (1979). 

Fewer analytical solutions have been published for 
the two- and three-dimensional forms of the solute- 
transport equation. Cleary and IJngs (1978) give sev- 
eral solutions derived using integral transform tech- 
niques, and Yeh (1981) presents a computer program 
that evaluates Green’s function to model one-, two-, 
and three-dimensional transport. 
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Theoretical Background 

Most models that simulate migration of dissolved 
contaminants in ground water solve the advective- 
dispersive solute-transport equation. This partial dif- 
ferential equation is derived from the conservation- 
of-mass principle (continuity equation), whereby the 
net rate of change of solute mass within a volume of 
porous media is equal to the difference between the 
flux of solute into and out of the volume, adjusted for 
the loss or gain of solute mass due to chemical reac- 
tions (Freeze and Cherry, 1979). The flux of solute 
into the volume is controlled by two physical process- 
es-advection and hydrodynamic dispersion. Hydro- 
dynamic dispersion, in turn, represents the combined 
effects of two other physical processes-molecular 
diffusion and mechanical dispersion. 

Advection 
Advective transport describes the bulk movement 

of solute particles along the mean direction of fluid 
flow at a rate equal to the average interstitial fluid 
velocity. In a saturated medium, this velocity can be 
calculated from Darcy’s law, such that 
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where 
(1) 

2 =average interstitial fluid velocity [L/T], 
K = hydraulic conductivity tensor for medium 

WJJ, 
n =effective porosity [dimensionless], and 

& =gradient in head [dimensionless] (equal to 
dhldx, the change in head per unit distance 
along the x-axis for uniform flow along the 
x-axis). 

Head, h in equation 1, is equal to the sum of the 
elevation head, z, with respect to a datum level, and 
the pressure head, p/y, where p is the fluid pressure 
(gage pressure) and y is the specific weight of water 
(Bear, 1979, p. 62). Water flows from areas of higher 
head toward areas of lower head. Effective porosity, 
n, differs from total porosity (volume of pore space per 
unit volume of aquifer material) in that it does not 
include pores that are too small to transmit water or 
“dead-end” pores, those that are not interconnected 
with other pores. 

In unsaturated porous media, the average intersti- 
tial fluid velocity can be approximated (Bear, 1979, p. 
209) as 

where 
v’ =average interstitial fluid velocity [L/T], 

z(0) =unsaturated hydraulic conductivity tensor for 
medium, which is a function of moisture con- 
tent [LPI’], and 

8 =moisture content of soil [dimensionless]. 
This form of the equation assumes that the movement 
of air in the soil is negligible and that the density of 
water is constant. 

Molecular diffusion 

In addition to advective transport, solutes spread 
within the fluid in the porous medium by molecular 
diffusion. Diffusion results from the random collision 
of solute molecules and produces a flux of solute 
particles from areas of higher to lower+solute concen- 
tration (Bear, 1979). The solute flux, J, can be given 
by Fick’s first law as 

(W 

whzre 
Dd = second-rank diagonal tensor of molecular diffu- 

sion lL’/T], 

Scheidegger (1961) stated that the coefficients of 
mechanical dispersion can be related to the average 
interstitial fluid velocity by means of the geometric 
dispersivity of the medium. For a saturated porous 
medium, geometric dispersivity depends on hydraulic 
conductivity, length of a characteristic flow path, and 
tortuosity (Bear, 1972, p. 614). In a medium that is 
isotropic with respect to dispersion, geometric disper- 
sivity can be expressed in terms of just two coeffi- 
cients-longitudinal dispersivity, al, and transverse 
dispersivity, tit (Bear, 1979, p. 234). 

+C =concentration gradient [M/L4], and The elements of the mechanical dispersion tensor 
C =concentration of solute (mass of solute per unit can be expressed in terms of longitudinal and trans- 

volume of fluid) [M/L3]. verse dispersivities, the magnitude of the velocity 

Bear and Bachmat (1967) state that the coefficients of 
molecular diffusion in an isotropic medium are depend- 
ent on the diffusion coefficient of the particular solute 
in water and the tortuosity of the medium. Rates of 
molecular diffusion are independent of ground-water 
velocity, and diffusion occurs even in the absence of 
fluid movement. 

Mechanical dispersion 

The average interstitial fluid velocity represents a 
mathematical approximation. True velocities at points 
in the aquifer will differ from this average value, in 
both magnitude and direction. Local variations in 
ground-water velocity may not greatly affect the bulk 
movement of ground water, but they do control the 
fate of solute particles. 

Mechanical dispersion describes the mixing and 
spreading of solutes along and transverse to the 
direction of flow in response to local variations in 
interstitial fluid velocities. On a microscopic scale (the 
scale of individual pores), mechanical dispersion 
results from (1) the distribution of velocities within an 
individual pore due to friction effects along the surface 
of soil grains, (2) differences in size of pores, (3) 
differences in path length for individual solute parti- 
cles, and (4) the effect of converging and diverging 
flow paths (Freeze and Cherry, 1979, p. 75). On a 
larger (macroscopic) scale, mechanical dispersion 
results from local variations in hydraulic conductivity, 
and thus fluid velocity, owing to the heterogeneity of 
aquifer material (Bear, 1979, p. 229). 

Laboratory tests on soil columns have shown that 
the flux of solutes due to mechanical dispersion can 
also be described using Fick’s first law, as 

f= -tGm.+c, CW 

where D, is the second-rank symmetric tensor of 
mechanical dispersion [L’/T]. 
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vector, v, and the magnitudes of its components, vX, 
vY, and v, (Bear, 1979, p. 235) as 

D mn =[~*v,2+olt(Vy2+V,2)1/V 
D mYY =[c(p,2+a,(v,2+v,2)1/v 
D 

mxY =Dmfl =(cYpt)vxvy/v 

D 
my2 =DmZy =(ctp.t)VyV~v 

D =D 
DlI= [‘yIvZ 

m~=(“,-“thxVz/V 
+ (Y&v,~ +vy2)l/v. (4) 

If a coordinate system is chosen, such that the 
direction of the average ground-water velocity is 
aligned with the x-direction (v=v, and vy=vZ=O), the 
off-diagonal terms in the dispersion tensor (eq. 4) will 
equal zero, and the mechanical dispersion tensor can 
be simplified to 

Dmx=Dmxx=~l~ 
Dmy=Dm =r+v 
DmZ=DmZy=~t~. (5) 

Hydrodynamic dispersion 
As stated earlier, hydrodynamic dispersion is the 

flux of solute due to the combined effect of molec$ar 
diffusion and mechanical dispersion. Solute flux, J, is 
given by Fick’s first law as 

f= -eE&, (6) 
zzz 

where D is the hydrodynamic dispersion tensor. 
In a flow system having uniform flow aligned with 

the x-axis, the coefficients of the hydrodynamic dis- 
persion tensor, D,, D,, and D,, are given by 

Dx=DmX+Dd=~I~+Dd 
Dy=DmY+Dd=atv+Dd 
D,=DmZ+Dd=atv+Dd. (7) 

The effects of mechanical dispersion generally are 
much greater than those of molecular diffusion, and, 
except at low ground-water velocities, the contribu- 
tion of molecular diffusion often is negligible. 

In laboratory experiments using homogeneous 
materials, values for longitudinal dispersivity, al, are 
typically between 0.004 and 0.4 inch (in), whereas in 
field studies, longitudinal dispersivities of as much as 
328 feet (ft) have been determined (Freeze and 
Cherry, 1979). The larger field values can be attrib- 
uted to increased mixing due to local variations in 
hydraulic conductivity (macrodispersion). A discus- 
sion of the apparent scale dependency of hydrody- 
namic dispersion is given in Anderson (1984). Trans- 

verse dispersivity is generally less than longitudinal 
dispersivity, by a factor of 5 to 20 (Freeze and Cherry, 
1979, p. 400). 

Advective-dispersive solute-transport 
equation1 

The advective-dispersive solute-transport equation 
describes the time rate of change of solute concentra- 
tion for a single solute and can be written as 

aec 
~=-~*[e;C-eD=*~Cl+eQ, (8) 

where Q, is used to represent a general source or sink 
term for production or loss of solute within the sys- 
tem. 

Equation 8 (after Bear, 1979, p. 241) can be written 
in terms of volumetric rather than mass concentra- 
tions because the fluid density is assumed to be 
constant. This is usually valid for most ground-water 
flow systems in which solutes are present in relatively 
low concentrations. 

The analytical solutions presented in this report are 
derived for idealized systems in which the ground- 
water velocity is assumed to be uniform, aligned with 
the x-axis, and of constant magnitude. The moisture 
content (equal to porosity for satnrated material) and 
the coefficients of hydrodynamic dispersion (see eq. 7) 
are also assumed to be constant. Given these assump- 
tions, the three-dimensional form of the solute- 
transport equation for a uniform flow system can be 
expressed as 

aceD a2C 
z- 

x,+Dy$+D,$-V$+Q~, (9) 1, 

where V represents the uniform velocity aligned with 
the x-axis. 

In a thin aquifer in which the solute is uniformly 
mixed in the vertical (y-z) plane at the inflow bound- 
ary, the concentration gradient. in the z-direction, 
aC/az, equals zero. The two-dimensional solute- 
transport equation can be expressed as 

Finally, if the solute concentration is uniform over 
the entire inflow boundary, such as in a soil column, 
the term aC/ay would also equal zero, yielding the 
one-dimensional solute-transport equation that can be 
expressed as 

ac a% ac 
-g=Dz-Vz -t&s, (11) 
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where D represents the dispersion coefficient along 
the direction of flow. 

Chemical transformation 

In addition to physical mechanisms that govern the 
movement of solutes through the ground-water sys- 
tem, chemical transformations may alter the concen- 
tration of a contaminant species in solution. Possible 
chemical transformations include dissolution, precipi- 
tation, oxidation, reduction, biological degradation, 
radioactive decay, and adsorption and ion-exchange 
reactions between the solute and the solid matrix of 
the aquifer. 

If the processes involved in chemical transformation 
can be described mathematically, they then can be 
incorporated in the source term, Q,, in the solute- 
transport equation for each chemical species. The 
analytical solutions described herein have been 
derived for systems in which the chemical transforma- 
tion terms are given by first-order (linear) relations. 
The relations and their incorporation in the solute- 
transport equation are described below. 

linear equilibrium adsorption 

Many ionic inorganic solutes and nonpolar organic 
solutes can be removed from solution by adsorption 
onto the surface of soil particles. The solute may be 
attracted to soil surfaces by either electrical attrac- 
tion, Van der Wals forces, or chemical bonding (chemi- 
sorption). A general expression for the change in 
solute concentration due to partitioning of solute par- 
ticles on the solid matrix (in the absence of dispersive 
or advective fluxes) can be stated as 

ac as 
eat= - Pbx f (1% 

where 
pb =bulk density of solid matrix measured as mass 

per unit volume of aquifer material [M/L3], and 
S =mass of solute adsorbed on solid matrix per 

unit mass of solid material [dimensionless]. 
The amount of solute remaining in solution depends 

on the amount of solute in the adsorbed phase. The 
functional relation is usually determined experimen- 
tally through a series of batch tests in which solutions 
of known initial concentration are mixed with differing 
amounts of adsorbate. After equilibrium is achieved, 
the final solute concentration of each solution is meas- 
ured, and the mass of solute adsorbed is calculated. 
An equilibrium adsorption curve can then be fitted to 
these data. Equilibrium concentrations are dependent 
on temperature, and the adsorption curve at a partic- 

Observed mass concentration vsluell 

lo.‘0 I I I I I 

IO.8 10-G 10” 10” Id IO” 10’. 

CONCENTRATION OF SOLUTE IN SOLUTION. IN MILLIGRAMS PER LITER 

Figure 1 .-Typical shape of equilibrium adsorption 
isotherm. 

ular temperature is termed an “equilibrium adsorption 
isotherm.” A typical equilibrium adsorption isotherm 
is shown in figure 1. 

A linear approximation of the equilibrium adsorp- 
tion isotherm is generally applicable in systems in 
which the solute concentration is low relative to the 
adsorptive capacity of the porous medium. The 
adsorption of various nonionic organic solutes at trace 
concentrations onto sediments and soils has also been 
shown to be linear (Cherry and others, 1984). Many 
nonlinear forms for the adsorption isotherm, some 
empirical and some that account for the physical 
mechanisms of adsorption, are suggested in the liter- 
ature (see Helfferich, 1962). However, the transport 
equation that incorporates these other forms must be 
solved by numerical methods. 

Because the amount adsorbed depends solely on the 
solute concentration, equation 12 can be expressed as 

(13) 

where aS/aC is determined from the functional rela- 
tion between C and S. For a linear equilibrium adsorp- 
tion isotherm, &/Z is equal to the slope of the 
adsorption isotherm and often is termed k or the 
“partitioning coefficient.” The source term can be 
incorporated in the general three-dimensional form of 
the solute-transport equation (eq. 9) to yield 

(14) 

where R is referred to as the “retardation factor,” 
given by 
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Dividing through by R yields 

where V* and D:, D;, and D: are the scaled (or 
retarded) velocity and dispersion coefficients, respec- 
tively. Equation 16 shows that transport of solutes 
subject to linear adsorption can be simulated in the 
same manner as a nonadsorbed solute using these 
scaled coefficients. Because the apparent velocity of 
the adsorbed solute is reduced, the solute will arrive 
at a given point later than a nonadsorbed solute. 

The use of equilibrium isotherms assumes that 
equilibrium exists at all times between the porous 
medium and the solute in solution. This assumption is 
generally valid when the adsorption process is fast in 
relation to the ground-water velocity (Cherry and 
others, 1934). If adsorption proceeds slowly, kinetics 
of the reaction must be considered. Nonequilibrium 
adsorption relations can be incorporated in the trans- 
port equation, but numerical methods are needed for 
solution of the resulting equation. 

The process of adsorption is also assumed to be 
reversible. If hysteresis effects during desorption are 
significant, other forms of the adsorption isotherms 
must be considered, and numerical methods would be 
required. 

Ion exchange 

Ion exchange is an adsorption process in which a 
cation in solution replaces another cation that is elec- 
trically bound to collodial material in the soil. Under 
certain conditions, ion exchange can be modeled in a 
manner similar to linear adsorption (R.W. Cleary, 
Princeton University, written commun., 1977). The 
exchange reaction for monovalent ions can be 
expressed as 

A++B+RsB++A+R, (17) 

where A+ is used to represent a cation in solution, R 
is the exchange medium, and B+ represents the 
counter ion released from the exchanger. At equilib- 
rium, a selectivity coefficient, &, can be defined, such 
that 

EB+I[A+Rl 
K=[A+,[B+R] ’ (18) 

where the bracketed terms represent the activities of 
each constituent. 

Measured values of K, can be used in simulating 
transport by making the following assumptions: (1) if 
all exchange sites are assumed to be occupied initially, 

then [B+Rl represents the total cation exchange 
capacity (CEC) of the medium, which can be deter- 
mined experimentally and then treated as a constant; 
(2) the counter ion, Bf, is usually present in solution 
at much greater concentrations than the solute A+, 
and releases of additional amounts of the counter ion 
by exchange will not significantly alter its concentra- 
tion; thus, [B+l can also be treated as a constant; and 
(3) the relation between the amount of solute on the 
exchange sites and the amount remaining in solution 
can be defined as 

(19) 

where the distribution coefficient, kd, is determined 
through laboratory batch tests. 

Given these assumptions, the general expression for 
the change in solute concentration due to cation 
exchange can be expressed as 

ac aC 
eat= -P&x, 

where 

cw 

(21) 

This term would replace k in equation 15. For 
monovalent-divalent cation exchange, where 

A+++2B+R*2Bfi-A++R, (22) 

the distribution coefficient can be given by 

K,*CEC” 
kd= [B+]2 ’ (2% 

First-order chemical reactions 

Simple chemical reaction terms’ can be formulated to 
account for the kinetics of reactions under nonequilib- 
rium conditions. A first-order chemical process, such 
as radioactive decay or biological degradation, 
involves the irreversible unimolecular conversion of 
solute A to solute B (A+B). The rate of the reaction 
can be given by 

(24 

where A is the rate coefficient [Y/T]. The rate coeffi- 
cient can be expressed in terms of the half-life of the 
solute, T,,, (the time required for the concentration of 
the solute species to be reduced to half the initial 
concentration), as 
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h=ln(2)/Tl~,=0.693/‘I’1~~. (25) 

Equation 9 can be written to incorporate the first- 
order reaction as 

ac a% a2C 
at=DXz+D 

yv 
+.,$_,~-A,. (26) 

If the solute is subject to linear adsorption and to 
first-order chemical transformation in both the solute 
and adsorbed phases, equation 9 can be expressed as 

ac a2C 
R,t=D,,x,+D y$+D,$-V$RhC (27) 

where R is the retardation factor (eq. 15) or 

aC .a2C .a2C 
at- -D,=+D yv 

+D;$-V*$-XC, (28) 

where V’ and D” represent the scaled velocity and 
dispersion coefficients. If the adsorbed phase is not 
subject to chemical transformation, A in equation 28 
should be replaced by A*, where 

X.=X/R. (29) 

Some multiple-ion reactions can be approximated as 
a first-order reaction if all ions, except the species 
being considered, are present at high concentrations 
(R.W. Cleary, Princeton University, written com- 
mun., 1977). For example, if the reaction involves the 
conversion of solutes A and B to form solute C(A+B 
+C>, the rate of reaction would be given as 

d[Al -= -A,,[AI[B]. dt (30) 

If solute B is present at high concentration, its 
concentration will not change significantly due to 
conversion of A and [B] can be treated as a constant. 
Equation 26 or 28 can then be used with a modified A 
term, where A=AAB[B]. General bimolecular or 
multiple-ion reactions result in nonlinear chemical 
source terms. Reversible reactions and multistep 
reactions require simultaneous solution of the trans- 
port equation written for each species. Simulation of 
transport involving these chemical processes usually 
requires numerical methods. 

Initial conditions 
To solve the solute-transport equation, a complete 

set of boundary and initial conditions must be speci- 
fied. Initial conditions are used to define the solute 
concentration in the aquifer at the time inflow of 
solute begins. For the analytical solutions presented 

in this report, the initial conditions are specified such 
that all initial concentrations are zero. If the solute is 
conservative, a constant initial background solute 
concentration can be added to the calculated concen- 
trations. Analytical solutions for one-dimensional 
transport of nonconservative solute transport with 
nonzero initial concentrations are given in van Genu- 
chten and Alves (1982). 

Boundary conditions 

Three types of boundary conditions are generally 
associated with the solute-transport equation. The 
first-type (or Dirichlet) boundary condition specifies 
the value of the concentration along a section of the 
flow-system boundary. The second-type (or Neu- 
mann) boundary condition specifies the gradient in 
solute concentration across a section of the boundary. 
The third-type (or Cauchy) boundary condition is 
applied where the flux of solute across the boundary is 
dependent on the difference between a specified con- 
centration value on one side of the boundary and the 
solute concentration on the opposite side of the bound- 
ary. These three types of boundary conditions are 
used to describe conditions at the inflow and outflow 
ends of the flow system and also along the lateral 
boundaries of two- and three-dimensional systems. 

Inflow boundary 

The third-type boundary condition best describes 
solute concentrations at the inflow end in a uniform 
flow system (Bear, 1979, p. 268), where a well-mixed 
solute enters the system by advection across the 
boundary and is transported away from the boundary 
by advection and dispersion. The boundary conditions 
can be given as 

VC-D$=VC,, x=0, 

where C, is the known measured concentration in the 
influent water. The third-type boundary condition 
allows for solute concentration at the inflow boundary 
to be lower than C, initially and then to increase as 
more solute enters the system. Over time, the concen- 
tration gradient across the boundary, X%x, 
decreases as the concentration at the inflow boundary 
approaches C,. 

Alternatively, a first-type boundary condition can 
be specified at the inflow end, such that 

c=c,, x=0. (3% 

Application of this simpler form of boundary condition 
presumes that the concentration gradient across the 
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boundary equals zero as soon as flow begins. How- 
ever, this may lead to overestimation of the mass of 
solute in the system at early times. 

Equation 31 indicates that the difference between 
concentrations predicted for a system having a first- 
type source boundary condition and a system having a 
third-type boundary condition should decrease as the 
quantity DN decreases. Additional discussions of the 
effect and relative merits of the different types of 
inflow boundary conditions are presented in Gershon 
and Nir (1969), van Genuchten and Alves (1982), and 
Parker and van Genuchten (1984). 

Outflow boundary 

Often, the outflow boundary of the system being 
simulated is far enough away from the solute source 
that the boundary will not affect solute concentrations 
within the area of interest. Such a system can be 
treated as being “semi-infinite,” and either a first-type 
or second-type boundary condition can be specified as 

C, 
aC- a,-% x=m. 

When the system has a finite length, and solute 
concentrations near the outflow boundary are of inter- 
est, selection of an appropriate boundary condition 
becomes more difficult. In general, if the system 
discharges to a large, well-mixed reservoir and the 
additional solute will not significantly alter reservoir 
concentrations, then a third-type or first-type bound- 
ary condition (similar to the inflow boundary) can be 
used. If the reservoir is small or not well mixed, such 
as at the end of the soil column in figure 2A, concen- 
trations in the reservoir would equal solute concentra- 
tion at the discharge end of the system, and thus no 
concentration gradient would exist across the bound- 
ary. This can be specified by a second-type boundary 
condition as 

ac 
x=0, x=L, 

where L represents the length of the finite system. 
Van Genuchten and Alves (1982, p. 90-96) analyzed 

the difference between predicted concentrations 
obtained using analytical solutions for a semi-infinite 
system and a finite system having a second-type 
boundary condition in terms of two dimensionless 
numbers: (1) the column Peclet number (P) and (2) the 
number of displaced pore volumes (T), which are 
defined by 

p,vL 
D 

and C=Co*A(x,y,z,t)+(C1-C,)rA(x,y,z[t-tJ), (39) 

(35) 

T,Vt 
L’ 

They found that the predicted concentration at points 
near the outflow boundary begins to differ signifi- 
cantly for T greater than 0.25 and that the differences 
increase as T approaches 1 (corresponding to move- 
ment of the solute front closer to the outflow bound- 
ary). The magnitude of the difference and distance 
inward from the outflow boundary at which the solu- 
tions diverge decreases as P values increase. 

lateral boundaries 

In two- and three-dimensional systems, imperme- 
able or no-flow boundaries may be present at the base, 
top, or sides of the aquifer. Because there is no 
advective flux across the boundary, and molecular 
diffusion across the boundary is assumed to be negli- 
gible, the general third-type boundary condition sim- 
plifies to a second-type boundary condition, expressed 
as 

aC ay=o, y=O and y=W (374 

and 

8C z=o, z=O and z=H (3%) 

where W and H represent the width and height of the 
aquifer, respectively. 

In many cases, lateral boundaries of the system may 
be far enough away from the area of interest that the 
system can be treated as being infinite along the y- 
and z-axes. Boundary conditions can then be specified 
as 

c aC=(-j 
7 ay 7 

y::+cQ (384 

and 

c aC,() 
'az 7 

z- *co. (38b) 

Superposition 
Because the solute-transport equation is a linear 

partial-differential equation, the principle of superpo- 
sition can be used to calculate concentrations in the 
system if solute concentrations at the inflow boundary 
vary over time. The general form of the solution can 
be expressed as 
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Velocity (vkO.5 inch 
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Figure 2.-Examples of situations in which the principle of superposition can be applied: A, soil column with 
time-varying input concentration (cases A and B in text), B, waste-disposal site with spatially varying input 
concentrations (case C in text), and C, plot of average concentration measured along waste-disposal site boundary. 
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where 
C, =initial solute concentration at boundary, 

A(x,y,z,t) =general form of analytical solution where 
concentration is a function of space and 
time, 

C1 =solute concentration at boundary after 
t=t,, and 

tl =time at which solute concentration chang- 
es at boundary. 

The principle of superposition should be familiar to 
most hydrologists who have used analytical solutions 
(such as the Theis equation) in analyzing aquifer tests. 
Several examples are provided to illustrate its appli- 
cation to solute-transport simulation. 

Case A: 

A solution is passed through a loo-in-long soil 
column (fig. 2A) for a period of 10 hours, with V=O.5 
inch per hour (in/h), D=0.05 square inch per hour 
(in’/h), and C,= 100 milligrams per liter (mg/L). At the 
end of the lo-hour period, the concentration of the 
influent is increased to C,=300 mg/L. Of interest is 
the concentration at x=10 in at the end of a total 
elapsed time of 20 hours. 

The analytical solution for transport of a conserva- 
tive solute in a semi-infinite column (assuming that 
boundary effects at x=L are negligible) with a first- 
type inflow boundary condition was given by Ogata 
and Banks (1961) as 

*(x,t)=$erfc[s]+exp[!$]*erfc[$]], 

where erfc is the complementary error function. (The 
solution is described in more detail later.) For the 
values given, equation 39 becomes 

C(l0 in, 20 hours)=100 mg/L*A(lO in, 20 hours)+(300 
mg/L-100 mg/L>A(lO in, [20 
hours-10 hours]) 

=lOO mg/L*(0.984)+200 mg/L 
l (0.088> 

=116.0 mg/L. 

Case B: 

This case is similar to case A, except that at the end 
of 10 hours, solute-free water (C,=O.O mg/L) is passed 
through the soil column, thus creating a solute pulse of 
finite duration. The concentration of solute at x= 10 in 
and t=20 hours can be given from equation 39 as 

C(10 in, 20 hours)=100 mg/L*A (10 in, 20 hours)+ 
(O-100 mg/L>A (10 in, [20-10 
hours]) 

=lOO mg/Le(0.984)-100 mg/L 
l (0.088) 

=89.6 mg/L. 
The principle of superposition can also be used to 

simulate more complex solute configurations at the 
boundary of two- and three-dimensional systems, as 
shown in case C. Also, if solute sources are at two 
locations, the calculated concentration from the first 
source at a particular point of interest can simply be 
added to the calculated concentration from the second 
source at that point. 

Case C: 

A waste-disposal site, shown in plan view in figure 
2B, has a solid-waste landfill and a smaller area for 
sludge disposal. Measured concentrations in fully 
screened wells along the eastern boundary downgra- 
dient from the landfill had chloride concentrations 
averaging 300 mg/L. Wells downgradient from both 
the sludge pond and the landfill had concentrations 
averaging 900 mg/L. Background chloride concentra- 
tions are 50 mg/L. Given V=l foot per day (ft/d), D, 
=20 feet squared per day (ft’/d>, and D,=4 ft2/d, 
calculate the concentration at a private well located at 
x=500 ft and y=300 ft at the end of 1 year. 

The analytical solution for transport of a conserva- 
tive solute in an infinitely wide aquifer having a 
finite-width or “strip” source along the inflow bound- 
ary is modified from Clear-y and Ungs (1978, p. 17): 

-erfc 

where YI and Ya are coordinates of the endpoints of 
the source on the y-axis and T is a dummy variable of 
integration. The solute source can be represented by 
two strip sources, the first extending from Y1=200 to 
Y2=8OO ft, with an effective concentration, CI, of 250 
mg/L (difference between measured and background 
concentration) and the second extending from YI= 
400 to Ya=6OO ft, with a concentration, Ca, of 600 
mg/L (measured concentration minus first-source 
effective concentration and background concentra- 
tion). The concentration at the private well can be 
calculated as 

c(500 ft, 300 ft)=Cbae~groun~+C10A(500 ft, 300 ft, 200 
ft, 800 ft, 365 days)+Cz*A(500 ft, 
300 ft, 400 ft, 600 ft, 365 days) 
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A 

3 Land surface 
c=c, 

Unsaturated zone 

B 

Not to scale 

Figure 3.-Two examples (A and B) of contaminant movement in field settings that can be simulated as 
one-dimensional solute-transport systems. 

=50 mg/L+250 mg/L*(O.1612)+600 developed for study of dispersion phenomena in soil or 
mg/L*(O. 1354) adsorption columns. Some field situations can also be 

=171.5 mg/L. idealized as one-dimensional transport systems; two 

One-Dimensional Solute 
examples are shown in figure 3. Figure 3A represents 
steady vertical flow through the unsaturated zone 

Transport beneath a septic tank drain field. Transport at the 
center of the field is simulated, and the horizontal 

Many analytical solutions for the one-dimensional spread of solutes along the edges of the field is 
form of the solute-transport equation (eq. 11) were ignored. Figure 3B represents a case of steady hori- 
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zontal ground-water flow from river A, which has 
been contaminated, to river B. 

One-dimensional systems can be finite, semi- 
infinite, or infinite in extent. In the finite or semi- 
infinite systems, water containing a known concentra- 
tion of a contaminant species enters the system at the 
origin (at x=0). Water and solute exit at the opposite 
end of the system (at x=L), which could represent the 
water table, a stream, or the end of a soil column (fig. 
3). 

In the finite-length system, the outflow boundary is 
close enough that it will have an effect on the magni- 
tude of concentrations within the area of interest. If 
the outflow boundary is far enough away as to have 
negligible effect on solute concentrations in the area of 
interest (equivalent to T<0.25, where T is the number 
of displaced pore volumes), solutions for a semi- 
infinite system can be used and are generally easier to 
evaluate. 

An example of transport in an infinite system might 
be the injection of a solute into the center of a long soil 
column. In this case, the spread of solute, both upgra- 
dient and downgradient from the source, is of interest. 
Solutions for an infinite system can be found in van 
Genuchten and Alves (1982) and Bear (1972, 1979). 

For the four analytical solutions presented in this 
section, either a first- or third-type boundary condi- 
tion is specified at the inflow end of a finite or 
semi-infinite system. Specifically, the solutions are 
for a 

Finite system with a first-type boundary condition 
at the inflow end, 
Finite system with a third-type boundary condition 
at the inflow end, 
Semi-infinite system with a first-type boundary 
condition at the inflow end, and 
Semi-infinite system with a third-type boundary 
condition at the inflow end. 

Solutions for the finite systems assume a second-type 
boundary condition at the outflow end. 

Two computer programs, FINITE and SEMINF, 
were developed to calculate concentrations in these 
four systems as a function of distance and elapsed 
time. These programs are also described in this sec- 
tion. The format used in presenting each of the 
solutions may seem repetitive, but it provides for easy 
reference. 

Finite system with first-type source 
boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

(40) l 
Boundary conditions: 

aLo 
dx- ’ 

XEL 

Initial condition: 

c=o, o<x< L at t=O (43) 

Assumptions : 

1. 
2. 

3. 
4. 

Fluid is of constant density and viscosity. 
Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, X=0>. 
Flow is in x-direction only, and velocity is constant. 
The longitudinal dispersion coefficient (D), which is 
equivalent to D, (eq. 7), is constant. 

Analytical solution 

The following equation is modified from van Genu- 
chten and Alves (1982, p. 63-65): 

C(x,t)=C, 

-2 exp[g+-g] 

where U=flL+4XD and pi are the roots of the 
equation 

VL p cot p+m=o. (45) 

Comments: 

Values of the first six roots of equation 45, a*cot(a) 
+c=O, are tabulated in Carslaw and Jaeger (1959, p. 
492) for various values of the constant c. Additional 
roots of equation 45 can be found through standard 
root-search techniques. 

The maximum number of terms that should be 
computed in the infinite series summation depends on 
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how fast the series converges. Convergence is usually 
a problem at early times (or at T << 1) near the origin 
(x=0), especially when the column Peclet number (P 
in eq. 35) is relatively large. The program described 
below determines that the series has converged if the 
absolute value of the last term in the series is less than 
1x10-12. A good initial estimate for the maximum 
number of terms is 100, but more should be used if the 
program indicates that the series did not converge. A 
minimum of 25 roots is used by the program. 

For a solute that is not subject to first-order chem- 
ical transformation (X=0), equation 44 can be replaced 
(Clear-y and Adrian, 1973; Wexler and Clear-y, 1979) 
by 

C(x,t)=C, 

1 

l-2 exp g-g [ 1 
m f3iSiIl - exp -2 

c 

(y) ( Ppt) 

. (46) 
i=l 

For large values of time (st*eady-state solution), 
equation 44 can be reduced (van Genuchten and Alves, 
1982, p. 58) to 

C(x)=C,exp (47) 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D and V 
by the retardation factor, R (eq. 15). (Note: U in eqs. 
44 and 47 would be given by U=dV*+4XD*). Tempo- 
ral variations in source concentration can be simulated 
through the principle of superposition (eq. 39). 

Description of program FINITE 

The program FINITE computes the analytical solu- 
tion to the one-dimensional solute-transport equation 
for a finite system with a first-type (eq. 44) or third- 
type (eq. 52) source boundary condition at the inflow 
end. It consists of a main program and four 
subroutines-ROOTl, ROOT3, CNRMLl, and 
CNRML3. The function of the main program and 
subroutines ROOT1 and CNRMLl are outlined below; 
the program code listing is presented in attachment 2. 
Subroutines ROOT3 and CNRML3 are called when a 
third-type boundary condition is specified and are 
described in a subsequent section. 

The program also calls the output subroutines 
TITLE, OFILE, and PLOTlD, which are common to 
most of the programs described in this report. These 
subroutines are described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 1. 

The program calls subroutine ROOT1 to compute 
the positive roots of equation 45 when a first-type 
source boundary condition is specified and then exe- 
cutes a set of nested loops. The inner loop calls 
subroutine CNRMLl to calculate the concentration 
for a particular time value and distance; the outer loop 
cycles through all specified time values and prints a 
table of concentration in relation to distance for each 
time value. Graphs of concentration in relation to 
distance can also be plotted. 

Subroutines ROOT1 and CNRMLl 

Subroutine ROOT1 calculates the roots of the equa- 
tion 

a*cot(a)+c=O 

by an iterative procedure. The first root is known to 
lie between 1~/2 and 7~, and an initial estimate of 0.75 7~ 
is made. Newton’s second-order method (Salvadori 
and Baron, 1961, p. 6) is used to correct and update 
the estimate at each iteration. A maximum of 50 
iterations and a convergence criterion of 1.0~10-‘~ 
are set in the subroutine. Each subsequent root of the 
equation is about r greater than the previous one. 
This value is used as an initial estimate in the search 
for the remaining roots. 

Subroutine CNRMLl calculates the normalized con- 
centration (C/C,,) for a particular time value and 
x-distance value, using equation 44 for a solute subject 
to first-order chemical transformation and equation 46 
if the solute is conservative (h=O). The number of 
terms taken in the infinite series summation is speci- 
fied in the input data. 

Sample problems 1 a and 1 b 

Two sample problems are presented that use data 
similar to the data given in Lai and Jurinak (1972). In 
sample problem la, a conservative solute is introduced 
into a saturated soil column under steady flow. Model 
variables are 

Velocity (V) =0.6 in/h 
Longitudinal dispersion (D) =0.6 in21h 
System length (L) =12 in 
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Table I.-Input data format for the program FINITE 

Data VEGAable 
set COlUUmS Format name DescriDtion 

1 1 - 60 A60 TITLE Data to be printed in a title box on first page of program output. 
Last line in data set must have an -1" in column 1. First four lines 
are also used as title for plot. ------------------------------------------------------------------------------------------------------~----- 

2 1-4 14 NBC Boundary condition type (NBC = 1 for a first-type boundary condition; 
NBC - 3 for a third-type boundary condition). 

5-6 I4 Nx Number of x-coordinates at which solution will be evaluated. 

S-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NROOT Number of terms used in infinite series sumnation. 

17 - 20 14 IPLT Plot control variable. 
is greater than 0. 

Concentration profiles will be plotted if IPLT 
---------------------------------------------------------------------------------------~-------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
+ output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 .A10 LUNITS Units of length. 

51 - 60 A10 TWITS Units of time. ----------------------------------------------------------------------------------------~------------------- 
4 1 - 10 F1O.O CC Solute concentration at inflow boundary. 

11 - 20 F10.0 VX Ground-water velocity in x-direction.l 

21 - 30 F10.0 DX Longitudinal dispersion ooeffioient.1 

31 - 40 F10.0 DK First-order solute-decay coefficient.' 

41 - 50 F1O.O XL Length of flow system.' 

51 - 60 F10.0 XSCLP Sealing factor by which x-coordinate values are divided to convert them 
to plotter inches. -----___--------------------------------------------------------------------------------~------------------- 

5 1 - 80 8FlO.O X(I) X-;;zzfinates at which solution will be evaluated (elight values per 
-------_---------------------------------------------------------------------------------------------------- 

6 1 - 60 8FlO.O T(I) TimTn;;lues at which solution will be evaluated (ei6ht values per 

'All units must be consistent. 

Solute concentration at inflow 
boundary (C,) 

=l.O mg/L. Retardation factor (R) =8.31 
Scaled velocity (V’) =0.072 in/h 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 2.5, 5, 10, 15, and 20 hours. 

In sample problem lb, a solute is removed by linear 
equilibrium adsorption. Additional model variables 
are 

Soil bulk density (pb) =0.047 
lb(mass)/in3 

Porosity (n) =0.45 
Slope of adsorption isotherm (k) =70 in3Ab 

(mass). 

From these values and equations 15 and 16 (substitut- 
ing n for 0), the terms obtained are 

Scaled dispersion coefficient (I)‘) =0.072 in2/h. 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 20, 50, 100, and 150 hours. 

The input data sets for sample problems la and lb 
are shown in figures 4A and 514; computer plots of 
concentration profiles generated by the program 
FINITE are shown in figures 4B and 5B. Comparison 
of the concentration profiles at 20 hours shows the 
retarding effect of adsorption on solute movement. 

Program output for sample problem la is presented 
in attachment 4. Sample problems la and lb each 
required 3.9 seconds (s) of cen.tral processing unit 
(CPU) time on a Prime model 9955 Mod II. 
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A 
Sample Problem la -- Solute transport in a finite-length 
soil column with a first-type boundary condition at x=0 
Model Parameters: L=12 in, FO.6 in/h, D=0.6 in**l/h 

Kl=O.O per h, CO=l.O mg/L 
WC= 

1 25 05 50 1 
N/L IN/H IN"*2IH PER HOUR INCHES HOURS 

1.0 
E 

0.6 0.0 12.0 1.2 
0.0 
4.0 415 

El 2.0 2.5 

1x*: 6.5 9:o 
k-z 
9:5 

6.0 6.5 
10.0 10.5 

2:5 5.0 10.0 15.0 20.0 

3.0 3.5 
7.0 7.5 

11.0 11.5 

f3 

SampLe ProbLem lo -- Solute transport in o finite-Length 
soil column with o first-type boundary condition at x-0 

FlodeL Parameters: L-12 in, V-O.6 in/h, O-O.6 inxx2/h 
Kl-0.0 per h, CO-l.0 mg/L 

Figure 4.-(A) Sample input data set, and (B) concentration profiles generated by the program 
FINITE for a conservative solute in a finite-length system with first-type source boundary 
condition after 2.5, 5, IO, 15, and 20 hours (sample problem la). 
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A 

B 

Sample Problem lb -- Solute transport in a finite-length 
soil column with a first-type boundary condition at x=0 
Model Parameters: L=12 in, V=O.O72 in/h. D=0.072 in**2/h 

Kl=O.O per h, CO=l.O mg/L 
Solute is subject to linear adsorption 
==== 

1 25 04 50 1 
MG/L IN/H IN**P/H PER HOUR INCHES HOURS 

1.0 0.072 0.072 0.0 12.0 
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12.0 
20.0 50.0 100.0 150.0 

3.0 
7.0 

11.0 

3.5 
7.5 

11.5 

1 
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0 1.2 2.4 3.6 4.6 6 7.2 8.4 9.6 10.6 

Sample Problem lb -- Solute transport in a finite-Length 
soil column with a first-type baundory condition at x-0 
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Figure 5.-(A) Sample input data set, and (B) concentration profiles generated by the program FINITE for 
a solute subject to linear adsorption in a finite-length system with first-type source boundary 
condition after 20, 50, 100, and 150 hours (sample problem lb). 
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